Product Description
Laboratory fume hoods are a type of ventilation system with the primary function to exhaust chemical fumes, vapors, gasses, dust, mist and aerosol. Fume hoods also serve as physical barriers between reactions and the laboratory, offering a measure of protection against inhalation exposure, chemical spills, run-away reactions and fires.
A typical fume hood has a box like structure with a moveable sash window. Experimental procedures are performed within the hood which is consistently and safely ventilated, usually by means of an extract blower and ductwork. Chemical fumes are exhausted and diluted many times over in the atmosphere and have a negligible effect on human health. When environment concerns are of importance, an extract treatment system, often referred to as a scrubber is installed to remove most of the vapors from the exhaust air stream.
Product Parameters
Model Specification |
WJ-1500A |
WJ-1500B |
WJ-1800A |
WJ-1800B |
External dimensions of equipment(mm) |
1500(W)*1205 (D) *2400 (H) |
1800(W)*1205 (D) *2400 (H) |
Dimension of works pace (mm) |
1260(W1)*780(D1) *1100 (H1) |
1560(W1)*780(D1) *1100 (H1) |
Panel material |
20+6mm thick butterfly ceramics |
Material of internal lining board |
5mm thick ceramic fiber board |
Diversion structure |
Lower air return |
Control system |
Button control panel (LCD panel) |
PH value control |
The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump. |
Input power |
Three-phase five-wire 380V/50A |
Current for air fan |
Not over 2.8A(380V or 220V can be directly connected) |
Maximum load of socket |
12 KW(total of 4 sockets) |
Water tap |
1 set (remote control valve + water nozzle) |
No |
1 set (remote control valve + water nozzle) |
No |
Water discharge way |
Magnetic chemical pump strong discharge |
Using environment |
For non-explosion indoor use, within 0-40 degrees Celsius. |
Applicable fields |
Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc. |
Ways of Purification |
Spray sodium hydroxide solution, no less than 8 cubic meters/hour |
Spray sodium hydroxide solution.no less than 12 cubic meters/ hour |
Ways of surface air speed control |
Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door) |
Average surface air speed |
0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) |
0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm) |
Speed deviation of surface air |
Not higher than 10% |
The average intensity of illumination |
Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable. |
Noise |
Within 55 decibels |
Flow display |
White smoke can pass through the exhaust outlet, no overflow. |
Safety inspection |
No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test. |
Resistance of exhaust cabinet |
Less than 160 pa |
Power consumption |
Less than 1.0kw/h (excluding power consumption of fans and external instruments) |
Less than 1.2kw/h (excluding power consumption of fans and external instruments) |
Water consumption |
Less than 3.2L/ h |
Less than 4.0L/ h |
Performance of wind compensation |
With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory) |
Air volume regulating valve |
315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator) |
Our Advantages
The hood functions by maintaining a relatively negative pressure in the interior of the hood to prevent any contaminant from escaping while drawing air in through the hood opening at a consistent rate. A suitable hood face velocity (the speed at which air is drawn into the hood) is of importance to the safe and effective operation of a fume hood. While excessive face velocities can often result in turbulence and reduce containment, insufficient velocities can also compromise hood performance.
In general, a hood's face velocity is recommended to be between 0.3 m/s (60 fpm) and 0.5 m/s (100 fpm), however it is important to check with local safety regulations on the face velocity recommendation before using the fume hoods. Most hoods are commonly sized for a minimum face velocity at full sash opening; but as means to conserve energy some hoods size the minimum face velocity of the hood at half-sash opening creating new low flow fume hoods, which are now present in the market.
Detailed Photos
FAQ
Before Using a Fume Hood
-The hood should be inspected annually by a trained professional. Verify that a inspection is current by checking the date on the inspection sticker.
- Make sure the hood is functioning properly and has good air flow.
-The face velocity of the hood should be between 80-120 lfpm to work properly. If the hood is outside these parameters, contact EH&S about hood repair.
-Sash is the term used to describe the movable glass panel that covers the face area of a fume hood. Keep the hood sash completely closed
when not in use.
-Never remove, modify, or override installed sash stops.
-Attach a piece of light paper, such as a "Kimwipe" to the inside bottom corner of the hood sash. Inward movement of the paper indicates air is being drawn into the hood. The paper should be moving, but not so rapidly that it tears or comes off.
- Avoid storing excess chemicals or equipment in the hood. If a small amount must be stored in the hood, keep them away from the baffle
slots in the rear of the hood or place on blocks so that air can flow to the bottom opening of the baffle.
- Never use the hood as a waste disposal mechanism (e.g., for evaporation of excess chemicals).
- Avoid cross-drafts which can cause turbulence and reduce the efficiency of the hood.