Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance

Product Details
Customization: Available
Material: Stainless Steel
Type: Slit Type
Shipping & Policy
Shipping Cost: Contact the supplier about freight and estimated delivery time.
Payment Methods:
visa mastercard discover JCB diners club american express T/T
PIX SPEI OXXO PSE OZOW
  Support payments in USD
Secure payments: Every payment you make on Made-in-China.com is protected by the platform.
Refund policy: Claim a refund if your order doesn't ship, is missing, or arrives with product issues.
Secured Trading Service
Diamond Member Since 2022

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Importers and Exporters
The supplier has import and export rights
Patents Awarded
The supplier had awarded 1 patents, you can check the Audit Report for more information
OEM Services
The supplier provides OEM services for popular brands
R&D Capabilities
The supplier has 1 R&D engineers, you can check the Audit Report for more information
to see all verified strength labels (11)
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
  • Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
Find Similar Products
  • Overview
  • Product Description
  • Product Parameters
  • More About the Fume Hood
  • Detailed Photos
  • Fume Hood Maintenance
  • FAQ
Overview

Basic Info.

Model NO.
WJ-1500B
Function
Exhaust, Velocity Control
Feature
Corrosion Resistance, Heat Resistant, Acid & Alkali Resistant, Fireproof, Explosion Proof
Hood Type
Standard
Color
Grey
Customized
Customized
Condition
New
Product Name
Chemical Fume Hood
Worktop Material
20+6 mm Ceramic
Liner Material
Ceramic Fiber Board
Input Power
380V/50A
Face Velocity
0.4-0.6 M/S
Application
Environment/Institute/Biology Lab/Chemical Lab
Transport Package
Standard Export Wooden Case Packing
Specification
1500*1205*2400 MM
Trademark
Ample
Origin
Chengdu, China
HS Code
8414809090
Production Capacity
200 Set/Month

Packaging & Delivery

Package Size
1900.00cm * 900.00cm * 2100.00cm
Package Gross Weight
500.000kg

Product Description

Product Description

Chemical fume hoods have found application in laboratories that involve working with toxic and hazardous substances. When handled efficiently, chemical fume hoods stand out as one of the most instrumental and efficient lab furniture pieces. It protects lab technicians and other employees in the lab from hazardous substances. Fume hoods also get rid of the harmful particles in the air inside the lab, including dust, toxic fumes, and gases, vapors etc. And fume hood also regulates the air, venting out the intoxicated air and allowing fresh air. In this way, a fume hood reduces the exposure the harmful substance and shields the lab workers.

As a laboratory apparatus, chemical fume hoods offer many advantages as compared to the traditional venting systems. Lab fume hoods are most commonly used in clinics and research laboratories. Although today, they have found some significance in other important applications too like in manufacturing units and botanical laboratories. Apart from this, fume hood safety is also instrumental in many medical facilities, electronics industries, circuit board manufacturing units, and even the semiconductor industry too, (to name just a few more).

    Product Parameters
     
                    Model Specification   WJ-1500A WJ-1500B WJ-1800A WJ-1800B
    External dimensions of equipment(mm) 1500(W)*1205 (D) *2400 (H) 1800(W)*1205 (D) *2400 (H)
    Dimension of works pace (mm) 1260(W1)*780(D1) *1100 (H1) 1560(W1)*780(D1) *1100 (H1)
    Panel material 20+6mm thick butterfly ceramics
    Material of internal lining board 5mm thick ceramic fiber board
    Diversion structure Lower air return
    Control system Button control panel (LCD panel)
    PH value control The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump.
    Input power Three-phase five-wire 380V/50A
    Current for air fan Not over 2.8A(380V or 220V can be directly connected)
    Maximum load of socket 12 KW(total of 4 sockets)
    Water tap 1 set (remote control valve + water nozzle) No 1 set (remote control valve + water nozzle) No
    Water discharge way Magnetic chemical pump strong discharge
    Using environment For non-explosion indoor use, within 0-40 degrees Celsius.
    Applicable fields Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc.
    Ways of Purification Spray sodium hydroxide solution, no less than 8 cubic meters/hour Spray sodium hydroxide solution.no less than 12 cubic meters/ hour
    Ways of surface air speed control Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door)
    Average surface air speed 0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) 0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm)
    Speed deviation of surface air Not higher than 10%
    The average intensity of illumination Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable.
    Noise Within 55 decibels
    Flow display White smoke can pass through the exhaust outlet, no overflow.
    Safety inspection No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test.
    Resistance of exhaust cabinet Less than 160 pa
    Power consumption Less than 1.0kw/h (excluding power consumption of fans and external instruments) Less than 1.2kw/h (excluding power consumption of fans and external instruments)
    Water consumption Less than 3.2L/ h Less than 4.0L/ h
    Performance of wind compensation With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory)
    Air volume regulating valve 315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator)
     
    More About the Fume Hood

    Laboratories are often characterized by the use of highly reactive and toxic chemicals and substances. Serving as the hub for all research and development activities, such laboratories need to be equipped with special furniture that has been designed specially to cater to these working conditions. Though there are a number of furniture pieces that have been developed specifically for laboratories, the chemical fume hood has become renowned for their advantageous and effective properties. These fume hoods have been designed to mechanically draw air inside, controlling the contamination of various substances in the lab. And fume hoods continuously control the exposure of the lab objects and specimens to hazardous substances.

    Chemical fume hoods are available in different forms depending on their working principle. The most common form of a fume hood is the bypass hood also known as a constant air volume (CAV) fume hood. The CAV hoods are called so because they are used to regulate a constant volume of air, operating to vent out a fixed amount of air all the time. The other popular type of fume hood - the variable air volume (VAV) fume hood is a more advanced one. This fume hood regulates airflow on the basis of the sash height. The VAV hoods are generally equipped with a monitor to check which mode they are working on, and they also feature an emergency purge option.

    Detailed Photos
       
    Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
    Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
     
    Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
    Acid & Alkali Resistant Explosion Proof Chemical Laboratory Fume Hood Corrosion Resistance
     
    Fume Hood Maintenance

    Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.

    • In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.

     Fume  hoods should  be certified, at  least annually, to ensure they are operating safely. Typical tests include face velocity measurements, smoke tests and tracer gas containment. Tracer gas containment tests are especially crucial, as studies  have shown that face velocity is not a good predictor of fume hood leakage.

    • Laboratory fume hoods are one of the most important used and abused hazard control devices. We should understand that the combined use of safety glasses, protective gloves, laboratory smocks, good safety practices, and laboratory fume hoods are very important elements in protecting us from a potentially hazardous exposure.

     Laboratory fume hoods only protect users when they are used properly and are working correctly. A fume hood is designed to protect the user and room occupants from  exposure to vapors,  aerosols, toxic  materials,  odorous,  and  other  harmful substances. A secondary purpose is to serve as a protective shield when working with potentially explosive or highly reactive materials. This is accomplished by lowering the hood sash.
    FAQ

    Why do fume hoods use so much energy?
    It's the air being sucked through the fume hood, not the fume hood itself that consumes so much energy. For health and safety reasons, labs use 100% outside air which must be heated or cooled for comfort before it is brought into the lab. In addition to the energy required to condition the air, a significant amount of additional electricity is required to run large fans to move the air through the building and through the fume hoods.

    How does shutting the sash save energy?
    Most fume hoods at Stanford are variable air volume (VAV), meaning that the fume hoods are designed to vary the air flow based on how wide open the sash height is. Sash position is connected to the building's ventilation system so that a building's fan speed and the volume of air moved is reduced when the sash is lowered.

    Is it safe to shut the sash?
    The sash is an important safety barrier between the fume hood interior and the laboratory, protecting the lab user. Sashes should be opened only to set up or modify an experiment. At all other times, shutting the sash is safest. When the sash is shut there is still some air flow through the hood to remove any fumes.

    How do I remind myself and my roommates to close the sash?
    You can post a sticker, like the one shown in the picture below, to remind yourself and your lab mates to close the sash when not in use. The sticker also educates new fume hood users tha a lower sash is safer, and that the sash should only be open when setting up and modifying experiments.

    What other fume hood practices can reduce my energy consumption?
    • Never use a fume hood just for storing chemicals - they belong in a safety cabinet, which doesn't require huge volumes of air.
    • If your fume hood has an occupancy switch, turn it off when not in use.
    • If your group is no longer using a specific fume hood, consider having it locked and de-commissioned so air no longer flows through it.

    Send your message to this supplier

    *From:
    *To:
    *Message:

    Enter between 20 to 4,000 characters.

    This is not what you are looking for? Post a Sourcing Request Now
    Contact Supplier