Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Biological fume hoods can have a moveable, protective glass partition at the front. Most hoods also have a gas source inside, so that sterile work, such as the flaming of inoculation loops, can be done. The fume hood should be positioned in an area of the laboratory where there is less traffic back and forth, which lessens the turbulence of air outside the fume hood.
Face velocity is the average amount of air that is pulled through the face of a hood. If these velocities are too low then chemical fumes can escape the hood and go back into the lab. If the velocities are too high, energy costs will be high as you exhaust large amounts of conditioned air from the room. In other words, if too much air is being pulled into the machine (high volumetric flow) it becomes extremely inefficient. If too little air is being pulled into the machine (low volumetric flow), then it can be dangerous for those around the equipment. Airspeed is everything when discussing face velocity. Today we are going to discuss fume hood face velocity requirements, so you can keep your equipment safe and efficient.
Average velocity is calculated by dividing the sash opening into an imaginary grid pattern. Each square of this grid should be approximately 1ftsq. Then take air measurements (velocity readings) at the center point in each of these imaginary squares. You can do this using a velometer, anemometer or similar device. Each one of these readings should be for approximately 10 seconds (the longer the better). Record the reading in a notepad and repeat until you have measured from all squares. Once complete analyze the measurements and look for outliers.
Model Parameters |
YT-1500A | YT-1500B | YT-1500C | YT-1800A | YT-1800B | YT-1800C |
Size (mm) | 1500(W)*865(D)*2400(H) | 1800(W)*1205(D)*2400(H) | ||||
Worktop Size (mm) | 1260(W1)*795(D1)*1100(H1) | 1560(W1)*795(D1)*1100(H1) | ||||
Worktop | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board |
Liner | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate |
Diversion Structure | Back Absorption | |||||
Control System | Touch-Tone Control Panel (LED Screen) | |||||
Input Power | 220V/32A | |||||
Fan Power | Less than 2.8 A | |||||
Socket Max. Load | 5KW | |||||
Faucet | 1 Set | |||||
Drainage Mode | Natural Fall | |||||
Storage | Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel | |||||
Application | Indoor No-blast, 0-40 ºC | |||||
Application Field | Organic Chemical Experiment | |||||
Face Velocity Control | Manual Control | |||||
Average Face Velocity | 0.3-0.5 m/s Exhaust: 720-1200m³/h | 0.3-0.5 m/s Exhaust:900- 1490m³/h | ||||
Face Velocity Deviation | Less than 10% | |||||
Average Illumination | Less than 500 Lux | |||||
Noise | Within 55 dB | |||||
Exhaust Air | No Residue | |||||
Safety Test | In Accord with International Standard | |||||
Resistance | Less than 70Pa | |||||
Add Air Function | Distinctive Structure (Need Exclusive Add Air System) | |||||
Air Flow Control Valve | Dia. 250mm Flange Type Anti-Corrosion Control Valve | Dia. 315mm Flange Type Anti-Corrosion Control Valve |
A fume hood is an enclosed work space in a laboratory that prevents the outward flow of air. Fume hoods cab be designed for work with inorganic or radioactive materials, or with biological materials. Biological fume hoods can be equipped with filters, to ensure that the air entering and exiting the cabinet is sterile. This minimizes the risk of exposure of laboratory personnel to biological agents that could be a health threat. Also, the work surfaces and materials inside the fume hood are protected from contamination from airborne bacteria or viruses . The latter is of particular relevance in some viral research, where the tissue surfaces used to grow the virus are prone to contamination.
The design of fume hoods differs, depending on the intended purpose (general purpose, chemical, radioisotope, biological). But all fume hoods share the feature of an inward flow of air. In biological fume hoods the flow of sterile air is typically from the back of the cabinet toward the laboratory worker, and from the top of the fume hood downward across the opening at the front of the hood.
This pattern of airflow ensures that any microorganisms residing on the laboratory worker are not carried into the work surface, and that no air from inside the cabinet escapes to the outside of the cabinet. Any air that is exhausted back into the laboratory first passes through filters that are designed to remove biological and viral contaminants. The most popular type of biological filter is the high-energy particulate air (or HEPA) filter.
• Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.
• In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.Why do fume hoods use so much energy?
It's the air being sucked through the fume hood, not the fume hood itself that consumes so much energy. For health and safety reasons, labs use 100% outside air which must be heated or cooled for comfort before it is brought into the lab. In addition to the energy required to condition the air, a significant amount of additional electricity is required to run large fans to move the air through the building and through the fume hoods.
How does shutting the sash save energy?
Most fume hoods at Stanford are variable air volume (VAV), meaning that the fume hoods are designed to vary the air flow based on how wide open the sash height is. Sash position is connected to the building's ventilation system so that a building's fan speed and the volume of air moved is reduced when the sash is lowered.
Is it safe to shut the sash?
The sash is an important safety barrier between the fume hood interior and the laboratory, protecting the lab user. Sashes should be opened only to set up or modify an experiment. At all other times, shutting the sash is safest. When the sash is shut there is still some air flow through the hood to remove any fumes.
How do I remind myself and my roommates to close the sash?
You can post a sticker, like the one shown in the picture below, to remind yourself and your lab mates to close the sash when not in use. The sticker also educates new fume hood users tha a lower sash is safer, and that the sash should only be open when setting up and modifying experiments.
What other fume hood practices can reduce my energy consumption?
• Never use a fume hood just for storing chemicals - they belong in a safety cabinet, which doesn't require huge volumes of air.
• If your fume hood has an occupancy switch, turn it off when not in use.
• If your group is no longer using a specific fume hood, consider having it locked and de-commissioned so air no longer flows through it.