Explosion Proof Laboratory Fume Hood with Movable Sash

Product Details
Customization: Available
Material: Stainless Steel
Type: Slit Type
Shipping & Policy
Shipping Cost: Contact the supplier about freight and estimated delivery time.
Payment Methods:
visa mastercard discover JCB diners club american express T/T
PIX SPEI OXXO PSE OZOW
  Support payments in USD
Secure payments: Every payment you make on Made-in-China.com is protected by the platform.
Refund policy: Claim a refund if your order doesn't ship, is missing, or arrives with product issues.
Secured Trading Service
Diamond Member Since 2022

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Importers and Exporters
The supplier has import and export rights
Patents Awarded
The supplier had awarded 1 patents, you can check the Audit Report for more information
OEM Services
The supplier provides OEM services for popular brands
R&D Capabilities
The supplier has 1 R&D engineers, you can check the Audit Report for more information
to see all verified strength labels (11)
  • Explosion Proof Laboratory Fume Hood with Movable Sash
  • Explosion Proof Laboratory Fume Hood with Movable Sash
  • Explosion Proof Laboratory Fume Hood with Movable Sash
  • Explosion Proof Laboratory Fume Hood with Movable Sash
  • Explosion Proof Laboratory Fume Hood with Movable Sash
  • Explosion Proof Laboratory Fume Hood with Movable Sash
Find Similar Products
  • Overview
  • Product Description
  • Product Parameters
  • More About the Fume Hood
  • Detailed Photos
  • Usage Attention
  • FAQ
Overview

Basic Info.

Model NO.
CG-1800B
Function
Exhaust, Velocity Control
Feature
Corrosion Resistance, Heat Resistant, Acid & Alkali Resistant, Fireproof, Explosion Proof
Hood Type
Standard
Color
Grey
Customized
Customized
Condition
New
Product Name
Fume Cupboard
Worktop
20+6 mm Ceramic
Liner Material
Ceramic Fiber Board
Input Power
380V/50A
Face Velocity
0.4-0.6 M/S
Application
Environment/Institute/Biology Lab/Chemical Lab
Transport Package
Standard Export Wooden Case Packing
Specification
1800*1205*2400 MM
Trademark
Ample
Origin
Chengdu, China
HS Code
8414809090
Production Capacity
200 Set/Month

Packaging & Delivery

Package Size
1900.00cm * 900.00cm * 2100.00cm
Package Gross Weight
360.000kg

Product Description

 
Product Description

By definition, a fume hood is an enclosure that has a movable sash, an upper airfoil, lower airfoil, and baffles. An enclosure without these features is named a ventilated enclosure.

To the user, the most important feature of a fume hood is the sash. The sash, or sash panels, are the pieces of transparent material-usually glass-that are located at the front of the fume chamber and are movable. The sash position has a huge impact on the airflow within the fume chamber, but the sash is also a barrier between the fume chamber and your breathing zone. It offers protection from other hazards, such as fire and explosion. Using the sash properly is one of the most important things you can do, not only to protect yourself, but to also save energy.

The next component to focus on is the baffles. These are normally located in the rear of the hood, and along with the back wall, create the exhaust plenum. The exhaust plenum has the lowest pressure within the hood, so the air naturally wants to flow there. There are usually slots or holes in the baffles to allow the air to flow into the exhaust plenum. There are many baffle designs, and some perform better than others. The baffles are the most critical component in fume hood performance, so users need to pay close attention to them.

The lower airfoil is also a critical component. The sash normally closes onto this airfoil. It is the nose of the work surface. There are many designs, but typically, they are constructed of metal and are designed to create a stream of air that sweeps across the work surface rearward toward the baffles

Product Parameters
 
                Model Specification   WJ-1500A WJ-1500B WJ-1800A WJ-1800B
External dimensions of equipment(mm) 1500(W)*1205 (D) *2400 (H) 1800(W)*1205 (D) *2400 (H)
Dimension of works pace (mm) 1260(W1)*780(D1) *1100 (H1) 1560(W1)*780(D1) *1100 (H1)
Panel material 20+6mm thick butterfly ceramics
Material of internal lining board 5mm thick ceramic fiber board
Diversion structure Lower air return
Control system Button control panel (LCD panel)
PH value control The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump.
Input power Three-phase five-wire 380V/50A
Current for air fan Not over 2.8A(380V or 220V can be directly connected)
Maximum load of socket 12 KW(total of 4 sockets)
Water tap 1 set (remote control valve + water nozzle) No 1 set (remote control valve + water nozzle) No
Water discharge way Magnetic chemical pump strong discharge
Using environment For non-explosion indoor use, within 0-40 degrees Celsius.
Applicable fields Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc.
Ways of Purification Spray sodium hydroxide solution, no less than 8 cubic meters/hour Spray sodium hydroxide solution.no less than 12 cubic meters/ hour
Ways of surface air speed control Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door)
Average surface air speed 0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) 0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm)
Speed deviation of surface air Not higher than 10%
The average intensity of illumination Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable.
Noise Within 55 decibels
Flow display White smoke can pass through the exhaust outlet, no overflow.
Safety inspection No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test.
Resistance of exhaust cabinet Less than 160 pa
Power consumption Less than 1.0kw/h (excluding power consumption of fans and external instruments) Less than 1.2kw/h (excluding power consumption of fans and external instruments)
Water consumption Less than 3.2L/ h Less than 4.0L/ h
Performance of wind compensation With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory)
Air volume regulating valve 315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator)
 
More About the Fume Hood

Fume hoods are vital in any laboratory. From containing powders at a weighing station, to applications where fumes from solvents, acids, or bases put research personnel at risk. Every scientist today can visualize the large fume hood built into every lab they ever set foot in, from first year undergrad chemistry onwards. However, with the advent of ever-improving filters, such as charcoal or HEPA filters, the newer, ductless fume hoods are increasingly an option, and one that can save energy.

Fume hoods use powerful ventilation systems to draw air across the threshold, through the fume hood, and out through the ventilation. In a ducted fume hood,that air comes from outside and is vented outside. This exchange of air can be a substantial burden on the heating and/or cooling systems of a facility. Estimates of several thousands of dollars annually are calculated to manage the air temperature alone when running a ducted fume hood. The key advantage of a ductless fume hood is that they use ambient air. They draw air from the lab and vent the filtered air back into the lab. This completely eliminates the need to heat or cool incoming air.

Detailed Photos
                 
Explosion Proof Laboratory Fume Hood with Movable Sash
Explosion Proof Laboratory Fume Hood with Movable Sash
 
Explosion Proof Laboratory Fume Hood with Movable Sash
Explosion Proof Laboratory Fume Hood with Movable Sash


  
Usage Attention

As a best practice, the lower the sash handle is, the safer the user will be. Hoods should never be used at full open-this is for setup only. Working with an 18-inch opening on a vertical sash is far safer than working at full open.  

When you stand in front of the sash opening, your body acts like an airplane wing; the air being drawn into the hood flows over your shoulders and around your sides, creating a low-pressure zone directly in front of you. This low-pressure area in front of you will attempt to pull air from inside the hood outward,  creating a loss of containment and possible exposure. This is why you always work at least six inches behind the sash to keep chemicals out of the area of reverse flow.

Next, extend your hands and arms into the hood and move them about. What are they doing to the airflow? Picture yourself in a canoe, your arms are the paddles, and just as the paddles can displace large amounts of water, your arms can displace large amounts of air creating turbulence and disrupting the airflow. This is a recipe for loss of containment. When working in the hood, move your hands and arms slowly and deliberately.

FAQ

6 Questions to Ask When Buying a Fume Hood:

-Which chemicals will you use within the hood?

-Is a ducted or ductless hood best suited to your needs and available space?

-Where will you place the fume hood in the lab? Consider workflows, access to external exhaust systems, and competing air patterns.

-What size fume hood will best suit your needs? Be sure to consider what (if any) equipment will be enclosed in the hood.

-Are any service fixtures or accessories such as airflow monitors, electrical outlets, water, or gas fixtures required?

-Are base cabinets for acid, solvent, or non-chemical storage required?

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now
Contact Supplier