Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood

Product Details
Customization: Available
Material: Stainless Steel
Type: Slit Type
Shipping & Policy
Shipping Cost: Contact the supplier about freight and estimated delivery time.
Payment Methods:
visa mastercard discover JCB diners club american express T/T
PIX SPEI OXXO PSE OZOW
  Support payments in USD
Secure payments: Every payment you make on Made-in-China.com is protected by the platform.
Refund policy: Claim a refund if your order doesn't ship, is missing, or arrives with product issues.
Secured Trading Service
Diamond Member Since 2022

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Importers and Exporters
The supplier has import and export rights
Patents Awarded
The supplier had awarded 1 patents, you can check the Audit Report for more information
OEM Services
The supplier provides OEM services for popular brands
R&D Capabilities
The supplier has 1 R&D engineers, you can check the Audit Report for more information
to see all verified strength labels (11)
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
  • Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
Find Similar Products
  • Overview
  • Product Description
  • Product Parameters
  • More About the Fume Hood
  • Detailed Photos
  • Fume Hood Maintenance
  • FAQ
Overview

Basic Info.

Model NO.
WJ-1800A
Function
Exhaust, Velocity Control
Feature
Corrosion Resistance, Heat Resistant, Acid & Alkali Resistant, Fireproof, Explosion Proof
Hood Type
Standard
Color
Grey
Customized
Customized
Condition
New
Product Name
Chemical Fume Hood
Work Surface
Ceramic
Interior Baffle
Ceramic/Ceramic Fiber
Airflow
Ceramic Fiber
Liner Material
Ceramic Fiber
Sash
Tempered Glass/Laminated Glass
Cabinet
Multi-Layer Solid Wood
Application
Environment/Institute/Biology Lab/Chemical Lab
Transport Package
Standard Export Wooden Case Packing
Specification
1800*1205*2400 MM
Trademark
Ample
Origin
Chengdu, China
HS Code
8414809090
Production Capacity
200 Set/Month

Packaging & Delivery

Package Size
1900.00cm * 900.00cm * 2100.00cm
Package Gross Weight
500.000kg

Product Description

Product Description

A fume hood (sometimes called a fume cupboard or fume closet) is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.

A fume hood is typically a large piece of equipment enclosing five sides of a work area, the bottom of which is most commonly located at a standing work height.

Two main types exist, ducted and recirculating (ductless). The principle is the same for both types: air is drawn in from the front (open) side of the cabinet, and either expelled outside the building or made safe through filtration and fed back into the room. This is used to:

-protect the user from inhaling toxic gases (fume hoods, biosafety cabinets, glove boxes)
-protect the product or experiment (biosafety cabinets, glove boxes)
-protect the environment (recirculating fume hoods, certain biosafety cabinets, and any other type when fitted with appropriate filters in the exhaust airstream)

Secondary functions of these devices may include explosion protection, spill containment, and other functions necessary to the work being done within the device.

Product Parameters
  
Model
Parameters
YT-1500A YT-1500B YT-1500C YT-1800A YT-1800B YT-1800C
Size (mm) 1500(W)*865(D)*2400(H) 1800(W)*1205(D)*2400(H)
Worktop Size (mm) 1260(W1)*795(D1)*1100(H1) 1560(W1)*795(D1)*1100(H1)
Worktop 20+6mm Ceramic 20+6mm Ceramic 12.7mm Solid Physiochemical Board 20+6mm Ceramic 20+6mm Ceramic 12.7mm Solid Physiochemical Board
Liner 5mm Ceramic Fibre 5mm Compact Laminate 5mm Compact Laminate 5mm Ceramic Fibre 5mm Compact Laminate 5mm Compact Laminate
Diversion Structure Back Absorption
Control System Touch-Tone Control Panel (LED Screen)
Input Power  220V/32A
Fan Power Less than 2.8 A 
Socket Max. Load 5KW
Faucet 1 Set
Drainage Mode  Natural Fall
Storage Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel
Application Indoor No-blast, 0-40 ºC
Application Field Organic Chemical Experiment
Face Velocity Control Manual Control
Average Face Velocity 0.3-0.5 m/s  Exhaust: 720-1200m³/h 0.3-0.5 m/s  Exhaust:900- 1490m³/h
Face Velocity Deviation Less than 10%
Average Illumination Less than 500  Lux
Noise Within 55 dB
Exhaust Air No Residue
Safety Test In Accord with International Standard
Resistance Less than 70Pa
Add Air Function Distinctive Structure (Need Exclusive Add Air System)
Air Flow Control Valve Dia. 250mm Flange Type Anti-Corrosion Control Valve Dia. 315mm Flange Type Anti-Corrosion Control Valve
More About the Fume Hood

Close the Sash for Safety

The sash on a fume hood serves many purposes, but the most important one is to protect persons working in the laboratory. When the sash is closed it prevents any "leakage" of chemical fumes from the hood.

A  closed sash also protects you from "escapes" caused by accidents. Shattered glass, chemical spills, and vapors are contained in the hood if the sash is closed and an "event" occurs.

Closing the sash improves overall hood performance for other hoods in the lab and within the building. Also, in case of a power  outage or hood ventilation failure, chemical vapors will not back up into the laboratory. Closing the Sash for Safety is a very healthy habit to develop

Detailed Photos
            
Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
 
Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
Heat Resistant Fireproof Explosion Proof Acid & Alkali Resistant Laboratory Chemical Fume Hood
 
Fume Hood Maintenance

Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.

• In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.

 Fume  hoods should  be certified, at  least annually, to ensure they are operating safely. Typical tests include face velocity measurements, smoke tests and tracer gas containment. Tracer gas containment tests are especially crucial, as studies  have shown that face velocity is not a good predictor of fume hood leakage.

• Laboratory fume hoods are one of the most important used and abused hazard control devices. We should understand that the combined use of safety glasses, protective gloves, laboratory smocks, good safety practices, and laboratory fume hoods are very important elements in protecting us from a potentially hazardous exposure.

 Laboratory fume hoods only protect users when they are used properly and are working correctly. A fume hood is designed to protect the user and room occupants from  exposure to vapors,  aerosols, toxic  materials,  odorous,  and  other  harmful substances. A secondary purpose is to serve as a protective shield when working with potentially explosive or highly reactive materials. This is accomplished by lowering the hood sash.
FAQ

Do you need a built-in blower or a remotely located blower?

Built-in blowers are easier to install (and therefore less expensive), but they can be noisy and they put the ductwork under positive pressure, so they should be reserved for non-hazardous applications, short duct runs and instances where a remote blower cannot be installed (such as a mobile lab).

Remote blowers, though more complex to install, can be sized for the specific situation and keep the ductwork under negative pressure for safer operation.

What is the layout of the duct run?

Will the duct go directly to the roof, or does it need to make some turns before reaching the roof? What diameter of duct will be used? Once the duct penetrates the roof, a final 90-degree elbow will be needed to turn the duct horizontal, then three to five feet of straight duct is needed between the elbow and blower.

Finally, the exhaust stack should include a zero-pressure weathercap (not a gooseneck, mushroom cap or anything that would block the exhaust from discharging in a vertical, up direction), and should terminate at least 10 feet above the roofline to allow the fumes to reach the airstream and not be returned into the building's air handling equipment

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now
Contact Supplier