Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
A fume hood (sometimes called a fume cupboard or fume closet) is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.
A fume hood is typically a large piece of equipment enclosing five sides of a work area, the bottom of which is most commonly located at a standing work height.
Two main types exist, ducted and recirculating (ductless). The principle is the same for both types: air is drawn in from the front (open) side of the cabinet, and either expelled outside the building or made safe through filtration and fed back into the room. This is used to:
-protect the user from inhaling toxic gases (fume hoods, biosafety cabinets, glove boxes)
-protect the product or experiment (biosafety cabinets, glove boxes)
-protect the environment (recirculating fume hoods, certain biosafety cabinets, and any other type when fitted with appropriate filters in the exhaust airstream)
Secondary functions of these devices may include explosion protection, spill containment, and other functions necessary to the work being done within the device.
Model Parameters |
YT-1500A | YT-1500B | YT-1500C | YT-1800A | YT-1800B | YT-1800C |
Size (mm) | 1500(W)*865(D)*2400(H) | 1800(W)*1205(D)*2400(H) | ||||
Worktop Size (mm) | 1260(W1)*795(D1)*1100(H1) | 1560(W1)*795(D1)*1100(H1) | ||||
Worktop | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board |
Liner | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate |
Diversion Structure | Back Absorption | |||||
Control System | Touch-Tone Control Panel (LED Screen) | |||||
Input Power | 220V/32A | |||||
Fan Power | Less than 2.8 A | |||||
Socket Max. Load | 5KW | |||||
Faucet | 1 Set | |||||
Drainage Mode | Natural Fall | |||||
Storage | Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel | |||||
Application | Indoor No-blast, 0-40 ºC | |||||
Application Field | Organic Chemical Experiment | |||||
Face Velocity Control | Manual Control | |||||
Average Face Velocity | 0.3-0.5 m/s Exhaust: 720-1200m³/h | 0.3-0.5 m/s Exhaust:900- 1490m³/h | ||||
Face Velocity Deviation | Less than 10% | |||||
Average Illumination | Less than 500 Lux | |||||
Noise | Within 55 dB | |||||
Exhaust Air | No Residue | |||||
Safety Test | In Accord with International Standard | |||||
Resistance | Less than 70Pa | |||||
Add Air Function | Distinctive Structure (Need Exclusive Add Air System) | |||||
Air Flow Control Valve | Dia. 250mm Flange Type Anti-Corrosion Control Valve | Dia. 315mm Flange Type Anti-Corrosion Control Valve |
Close the Sash for Safety
The sash on a fume hood serves many purposes, but the most important one is to protect persons working in the laboratory. When the sash is closed it prevents any "leakage" of chemical fumes from the hood.
A closed sash also protects you from "escapes" caused by accidents. Shattered glass, chemical spills, and vapors are contained in the hood if the sash is closed and an "event" occurs.
Closing the sash improves overall hood performance for other hoods in the lab and within the building. Also, in case of a power outage or hood ventilation failure, chemical vapors will not back up into the laboratory. Closing the Sash for Safety is a very healthy habit to develop
• Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.
Do you need a built-in blower or a remotely located blower?
Built-in blowers are easier to install (and therefore less expensive), but they can be noisy and they put the ductwork under positive pressure, so they should be reserved for non-hazardous applications, short duct runs and instances where a remote blower cannot be installed (such as a mobile lab).
Remote blowers, though more complex to install, can be sized for the specific situation and keep the ductwork under negative pressure for safer operation.
What is the layout of the duct run?
Will the duct go directly to the roof, or does it need to make some turns before reaching the roof? What diameter of duct will be used? Once the duct penetrates the roof, a final 90-degree elbow will be needed to turn the duct horizontal, then three to five feet of straight duct is needed between the elbow and blower.
Finally, the exhaust stack should include a zero-pressure weathercap (not a gooseneck, mushroom cap or anything that would block the exhaust from discharging in a vertical, up direction), and should terminate at least 10 feet above the roofline to allow the fumes to reach the airstream and not be returned into the building's air handling equipment