Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
A fume hood (sometimes called a fume cupboard or fume closet) is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.
A fume hood is typically a large piece of equipment enclosing five sides of a work area, the bottom of which is most commonly located at a standing work height.
Two main types exist, ducted and recirculating (ductless). The principle is the same for both types: air is drawn in from the front (open) side of the cabinet, and either expelled outside the building or made safe through filtration and fed back into the room. This is used to:
-protect the user from inhaling toxic gases (fume hoods, biosafety cabinets, glove boxes)
-protect the product or experiment (biosafety cabinets, glove boxes)
-protect the environment (recirculating fume hoods, certain biosafety cabinets, and any other type when fitted with appropriate filters in the exhaust airstream)
Secondary functions of these devices may include explosion protection, spill containment, and other functions necessary to the work being done within the device.
Model Parameters |
YT-1500A | YT-1500B | YT-1500C | YT-1800A | YT-1800B | YT-1800C |
Size (mm) | 1500(W)*865(D)*2400(H) | 1800(W)*1205(D)*2400(H) | ||||
Worktop Size (mm) | 1260(W1)*795(D1)*1100(H1) | 1560(W1)*795(D1)*1100(H1) | ||||
Worktop | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board |
Liner | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate |
Diversion Structure | Back Absorption | |||||
Control System | Touch-Tone Control Panel (LED Screen) | |||||
Input Power | 220V/32A | |||||
Fan Power | Less than 2.8 A | |||||
Socket Max. Load | 5KW | |||||
Faucet | 1 Set | |||||
Drainage Mode | Natural Fall | |||||
Storage | Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel | |||||
Application | Indoor No-blast, 0-40 ºC | |||||
Application Field | Organic Chemical Experiment | |||||
Face Velocity Control | Manual Control | |||||
Average Face Velocity | 0.3-0.5 m/s Exhaust: 720-1200m³/h | 0.3-0.5 m/s Exhaust:900- 1490m³/h | ||||
Face Velocity Deviation | Less than 10% | |||||
Average Illumination | Less than 500 Lux | |||||
Noise | Within 55 dB | |||||
Exhaust Air | No Residue | |||||
Safety Test | In Accord with International Standard | |||||
Resistance | Less than 70Pa | |||||
Add Air Function | Distinctive Structure (Need Exclusive Add Air System) | |||||
Air Flow Control Valve | Dia. 250mm Flange Type Anti-Corrosion Control Valve | Dia. 315mm Flange Type Anti-Corrosion Control Valve |
By definition, a fume hood is an enclosure that has a movable sash, an upper airfoil, lower airfoil, and baffles. An enclosure without these features is named a ventilated enclosure.
To the user, the most important feature of a fume hood is the sash. The sash, or sash panels, are the pieces of transparent material-usually glass-that are located at the front of the fume chamber and are movable. The sash position has a huge impact on the airflow within the fume chamber, but the sash is also a barrier between the fume chamber and your breathing zone. It offers protection from other hazards, such as fire and explosion. Using the sash properly is one of the most important things you can do, not only to protect yourself, but to also save energy.
The next component to focus on is the baffles. These are normally located in the rear of the hood, and along with the back wall, create the exhaust plenum. The exhaust plenum has the lowest pressure within the hood, so the air naturally wants to flow there. There are usually slots or holes in the baffles to allow the air to flow into the exhaust plenum. There are many baffle designs, and some perform better than others. The baffles are the most critical component in fume hood performance, so users need to pay close attention to them.
The lower airfoil is also a critical component. The sash normally closes onto this airfoil. It is the nose of the work surface. There are many designs, but typically, they are constructed of metal and are designed to create a stream of air that sweeps across the work surface rearward toward the baffles.
• Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.
• In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.1. What will you be doing inside the hood?
Try to document as much as you can about the application. What chemicals are used, and how are they used? Is heat involved? What volumes of chemicals will be used at a given time? Most importantly, know the answers to the following questions:
-Do you use Perchloric Acid?
-Do you use Hydrofluoric Acid (HF)?
-Are you working with Radioisotopes and require the use of lead bricks?
2. What size of fume hood do you need?
This is a four-part question:
I. How wide do you want the fume hood to be? Ample offers fume hoods from 30 inches wide to 16 feet wide, with many options in between.
II. Will there be equipment enclosed in the hood? If the answer is yes, then you must answer parts III and IV.
III. What are the dimensions of the equipment? This information is essential to determining how deep the hood needs to be to house your equipment.
IV. Do you need a bench-top or floor mounted hood? Applications that use extra-large equipment, such as 50-gallon drums, or applications that require equipment to be wheeled into the hood via a cart would require a floor mounted hood.
3. Do you require service fixtures or other accessories in the fume hood?
These include (but are not limited to) airflow monitors, electrical outlets, compressed air, laboratory gas, vacuum and cold water fixtures. Faucets are also available. Finally, do the fixtures need to be factory installed, or will the installer handle that at the job site by using field-installed kits?
4. What about required accessories outside of the fume hood?
Do you need a work surface and base cabinets, or will you be using existing casework to support the hood?
If you do need base cabinets, do you need acid storage, solvent storage or non-chemical storage?
Do you need ductwork from the hood to the roof, or will your HVAC contractor provide it?
5. How will the fume hood be exhausted?
Every fume hood needs a blower, and it is often misconceived that a blower comes attached to a fume hood.
Will there be a dedicated blower (exhaust fan) for this hood, or will it connect to a central exhaust system?
If it connects to a central system, will it be constant volume or variable air volume?
6. Do you need a built-in blower or a remotely located blower?
Built-in blowers are easier to install (and therefore less expensive), but they can be noisy and they put the ductwork under positive pressure, so they should be reserved for non-hazardous applications, short duct runs and instances where a remote blower cannot be installed (such as a mobile lab).
Remote blowers, though more complex to install, can be sized for the specific situation and keep the ductwork under negative pressure for safer operation.
7. What is the layout of the duct run?
Will the duct go directly to the roof, or does it need to make some turns before reaching the roof? What diameter of duct will be used? Once the duct penetrates the roof, a final 90-degree elbow will be needed to turn the duct horizontal, then three to five feet of straight duct is needed between the elbow and blower.
You should study your budget and determine if you are interested in spending a little more in the initial purchase of the hood in order to save thousands of dollars over the life of the hood. Balancing purchase price and operation costs should be given much consideration throughout your hood selection process.