Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
A fume hood (sometimes called a fume cupboard or fume closet) is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.
A fume hood is typically a large piece of equipment enclosing five sides of a work area, the bottom of which is most commonly located at a standing work height.
Two main types exist, ducted and recirculating (ductless). The principle is the same for both types: air is drawn in from the front (open) side of the cabinet, and either expelled outside the building or made safe through filtration and fed back into the room. This is used to:
-protect the user from inhaling toxic gases (fume hoods, biosafety cabinets, glove boxes)
-protect the product or experiment (biosafety cabinets, glove boxes)
-protect the environment (recirculating fume hoods, certain biosafety cabinets, and any other type when fitted with appropriate filters in the exhaust airstream)
Secondary functions of these devices may include explosion protection, spill containment, and other functions necessary to the work being done within the device.
Model Parameters |
YT-1500A | YT-1500B | YT-1500C | YT-1800A | YT-1800B | YT-1800C |
Size (mm) | 1500(W)*865(D)*2400(H) | 1800(W)*1205(D)*2400(H) | ||||
Worktop Size (mm) | 1260(W1)*795(D1)*1100(H1) | 1560(W1)*795(D1)*1100(H1) | ||||
Worktop | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board |
Liner | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate |
Diversion Structure | Back Absorption | |||||
Control System | Touch-Tone Control Panel (LED Screen) | |||||
Input Power | 220V/32A | |||||
Fan Power | Less than 2.8 A | |||||
Socket Max. Load | 5KW | |||||
Faucet | 1 Set | |||||
Drainage Mode | Natural Fall | |||||
Storage | Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel | |||||
Application | Indoor No-blast, 0-40 ºC | |||||
Application Field | Organic Chemical Experiment | |||||
Face Velocity Control | Manual Control | |||||
Average Face Velocity | 0.3-0.5 m/s Exhaust: 720-1200m³/h | 0.3-0.5 m/s Exhaust:900- 1490m³/h | ||||
Face Velocity Deviation | Less than 10% | |||||
Average Illumination | Less than 500 Lux | |||||
Noise | Within 55 dB | |||||
Exhaust Air | No Residue | |||||
Safety Test | In Accord with International Standard | |||||
Resistance | Less than 70Pa | |||||
Add Air Function | Distinctive Structure (Need Exclusive Add Air System) | |||||
Air Flow Control Valve | Dia. 250mm Flange Type Anti-Corrosion Control Valve | Dia. 315mm Flange Type Anti-Corrosion Control Valve |
A fume hood is the most central piece of safety equipment available to researchers in a laboratory environment. While it is understood that the face velocity and sash height can drastically influence airflow patterns, few specific recommendations can be given to the researcher to guide them to maximize the safety of their particular hood.
There are many styles and configurations of fume hoods, but there is no one-size-fits-all option for various fields of research. However, it is widely accepted that a fume hood face velocity of 80-120 ft/min is ideal for preventing nanoparticles in a hood from entering the breathing zone of a laboratory. Unlike constant flow fume hoods, which have no features to control the face velocity when the sash is moved constant velocity hoods maintain their velocity regardless of sash height. The constant velocity feature is a marvelous achievement toward improving laboratory safety conditions, but their extreme ease of use may lead researchers to become complacent with regard to safety. It is well known that a constant velocity fume hood can easily keep nanoparticles out of the lab air, and several groups have modeled how external obstructions and workers moving their arms across the fume hood threshold impact airflow patterns. Unfortunately, the most pragmatic case remains unexamined-that is, the influence of a typical synthetic reaction setup on airflow remarkably has yet to be explored
• Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.
• In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.6 Questions to Ask When Buying a Fume Hood:
-Which chemicals will you use within the hood?
-Is a ducted or ductless hood best suited to your needs and available space?
-Where will you place the fume hood in the lab? Consider workflows, access to external exhaust systems, and competing air patterns.
-What size fume hood will best suit your needs? Be sure to consider what (if any) equipment will be enclosed in the hood.
-Are any service fixtures or accessories such as airflow monitors, electrical outlets, water, or gas fixtures required?
-Are base cabinets for acid, solvent, or non-chemical storage required?