Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make at Made-in-china.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Chemical fume hoods are highly energy-intensive as they continuously remove conditioned air from a space. Constant volume chemical fume hoods can use more than 3 times as much energy as a single family home on an annual basis. The energy required for filtering, moving, cooling or heating, and cleaning air is the largest cost in lab facilities. Innovations in chemical fume hood technology and design have succeeded in reducing airflow through chemical fume hoods while maintaining, or increasing, safety and performance.
Variable air volume (VAV) chemical fume hoods exemplify an innovation in chemical fume hood technology.
VAV systems adjust the amount of air that passes through a chemical fume hood while maintaining a minimum velocity for safety. The reduction in air passing through the chemical fume hood when the sash is lowered results in a reduction of outside air that must be reconditioned to replace the air exhausted. The less outside air that must be conditioned results in lower building costs.
Model Specification | WJ-1500A | WJ-1500B | WJ-1800A | WJ-1800B |
External dimensions of equipment(mm) | 1500(W)*1205 (D) *2400 (H) | 1800(W)*1205 (D) *2400 (H) | ||
Dimension of works pace (mm) | 1260(W1)*780(D1) *1100 (H1) | 1560(W1)*780(D1) *1100 (H1) | ||
Panel material | 20+6mm thick butterfly ceramics | |||
Material of internal lining board | 5mm thick ceramic fiber board | |||
Diversion structure | Lower air return | |||
Control system | Button control panel (LCD panel) | |||
PH value control | The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump. | |||
Input power | Three-phase five-wire 380V/50A | |||
Current for air fan | Not over 2.8A(380V or 220V can be directly connected) | |||
Maximum load of socket | 12 KW(total of 4 sockets) | |||
Water tap | 1 set (remote control valve + water nozzle) | No | 1 set (remote control valve + water nozzle) | No |
Water discharge way | Magnetic chemical pump strong discharge | |||
Using environment | For non-explosion indoor use, within 0-40 degrees Celsius. | |||
Applicable fields | Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc. | |||
Ways of Purification | Spray sodium hydroxide solution, no less than 8 cubic meters/hour | Spray sodium hydroxide solution.no less than 12 cubic meters/ hour | ||
Ways of surface air speed control | Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door) | |||
Average surface air speed | 0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) | 0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm) | ||
Speed deviation of surface air | Not higher than 10% | |||
The average intensity of illumination | Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable. | |||
Noise | Within 55 decibels | |||
Flow display | White smoke can pass through the exhaust outlet, no overflow. | |||
Safety inspection | No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test. | |||
Resistance of exhaust cabinet | Less than 160 pa | |||
Power consumption | Less than 1.0kw/h (excluding power consumption of fans and external instruments) | Less than 1.2kw/h (excluding power consumption of fans and external instruments) | ||
Water consumption | Less than 3.2L/ h | Less than 4.0L/ h | ||
Performance of wind compensation | With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory) | |||
Air volume regulating valve | 315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator) |
Chemical fume hoods are the primary engineering control for capturing and removing hazardous airborne contaminants in laboratories. Use a chemical fume hood when handling chemicals that have high acute toxicity, are carcinogens, mutagens or are reproductive toxins; anytime your work involves potential exposure to chemicals; chemicals are flammable, corrosive or irritating, reactive, potentially explosive; or where heating or agitation may cause chemicals to spatter or aerosolize. Chemicals with particularly low odor thresholds,should also be handled in a chemical fume hood, regardless if hazardous or non-hazardous.
There may be instances where there is only a very low risk of exposure to the chemicals described above (e.g., use of minimal quantities in a closed system). A risk assessment can be performed to determine if a chemical can be safely handled outside of a chemical fume hood.
Consider upgrading to a glove box or other isolation device for particularly hazardous substances, toxic gases, and highly reactive or explosive/pyrophoric materials, as chemical fume hoods are, under the best of circumstances, only certified to a containment performance of less than 0.1 part per million (ppm) leakage rate.
• Hoods should be evaluated by the user before each use to ensure adequate face velocities and the absence of excessive turbulence.
• In case of exhaust system failure while using a hood, shut off all services and accessories and lower the sash completely. Leave the area immediately.Why do fume hoods use so much energy?
It's the air being sucked through the fume hood, not the fume hood itself that consumes so much energy. For health and safety reasons, labs use 100% outside air which must be heated or cooled for comfort before it is brought into the lab. In addition to the energy required to condition the air, a significant amount of additional electricity is required to run large fans to move the air through the building and through the fume hoods.
How does shutting the sash save energy?
Most fume hoods at Stanford are variable air volume (VAV), meaning that the fume hoods are designed to vary the air flow based on how wide open the sash height is. Sash position is connected to the building's ventilation system so that a building's fan speed and the volume of air moved is reduced when the sash is lowered.
Is it safe to shut the sash?
The sash is an important safety barrier between the fume hood interior and the laboratory, protecting the lab user. Sashes should be opened only to set up or modify an experiment. At all other times, shutting the sash is safest. When the sash is shut there is still some air flow through the hood to remove any fumes.
How do I remind myself and my roommates to close the sash?
You can post a sticker, like the one shown in the picture below, to remind yourself and your lab mates to close the sash when not in use. The sticker also educates new fume hood users tha a lower sash is safer, and that the sash should only be open when setting up and modifying experiments.
What other fume hood practices can reduce my energy consumption?
• Never use a fume hood just for storing chemicals - they belong in a safety cabinet, which doesn't require huge volumes of air.
• If your fume hood has an occupancy switch, turn it off when not in use.
• If your group is no longer using a specific fume hood, consider having it locked and de-commissioned so air no longer flows through it.