Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Bypass Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
An auxiliary air hood is a variation of the by-pass hood and has many names such as add-air, induced air and make-up air.
An additional supply air plenum - often called a "bonnet" - on the top, front portion of the hood supplies up to 50% of the make-up air directly into the fume hood via its own blower and duct run.
This limits the exhausted volume of tempered air. This is significant because fume hoods present an issue of air consumption.
In order for the air to be exhausted from the lab, it must be supplied to the lab or the space will be extremely negatively pressured. Most chemistry labs are designed to be only slightly negatively pressured, approximately 10% negative with regard to the air pressure supplied.
For example, if your fume hood requires 1,000 cubic feet per minute (CFM), then you could supply the space with only 900 CFM for that fume hood to exhaust, and the lab would be kept slightly negative.
Model Specification | WJ-1500A | WJ-1500B | WJ-1800A | WJ-1800B |
External dimensions of equipment(mm) | 1500(W)*1205 (D) *2400 (H) | 1800(W)*1205 (D) *2400 (H) | ||
Dimension of works pace (mm) | 1260(W1)*780(D1) *1100 (H1) | 1560(W1)*780(D1) *1100 (H1) | ||
Panel material | 20+6mm thick butterfly ceramics | |||
Material of internal lining board | 5mm thick ceramic fiber board | |||
Diversion structure | Lower air return | |||
Control system | Button control panel (LCD panel) | |||
PH value control | The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump. | |||
Input power | Three-phase five-wire 380V/50A | |||
Current for air fan | Not over 2.8A(380V or 220V can be directly connected) | |||
Maximum load of socket | 12 KW(total of 4 sockets) | |||
Water tap | 1 set (remote control valve + water nozzle) | No | 1 set (remote control valve + water nozzle) | No |
Water discharge way | Magnetic chemical pump strong discharge | |||
Using environment | For non-explosion indoor use, within 0-40 degrees Celsius. | |||
Applicable fields | Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc. | |||
Ways of Purification | Spray sodium hydroxide solution, no less than 8 cubic meters/hour | Spray sodium hydroxide solution.no less than 12 cubic meters/ hour | ||
Ways of surface air speed control | Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door) | |||
Average surface air speed | 0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) | 0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm) | ||
Speed deviation of surface air | Not higher than 10% | |||
The average intensity of illumination | Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable. | |||
Noise | Within 55 decibels | |||
Flow display | White smoke can pass through the exhaust outlet, no overflow. | |||
Safety inspection | No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test. | |||
Resistance of exhaust cabinet | Less than 160 pa | |||
Power consumption | Less than 1.0kw/h (excluding power consumption of fans and external instruments) | Less than 1.2kw/h (excluding power consumption of fans and external instruments) | ||
Water consumption | Less than 3.2L/ h | Less than 4.0L/ h | ||
Performance of wind compensation | With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory) | |||
Air volume regulating valve | 315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator) |
Acid digestion
These units are typically constructed of polypropylene to resist the corrosive effects of acids at high concentrations. If hydrofluoric acid is being used in the hood, the hood's transparent sash should be constructed of polycarbonate which resists etching better than glass. Hood ductwork should be lined with polypropylene or coated with PTFE (Teflon).
Downflow fume hoods, also called downflow work stations, are typically ductless fume hoods designed to protect the user and the environment from hazardous vapors generated on the work surface. A downward air flow is generated and hazardous vapors are collected through slits in the work surface.
These units feature a waterwash system (scrubber - see below) in the ductwork. Because dense perchloric acid fumes settle and form explosive crystals, it is vital that the ductwork be cleaned internally with a series of sprays.
This fume hood is made with a coved stainless steel liner and coved integral stainless steel countertop that is reinforced to handle the weight of lead bricks or blocks.
This type of fume hood absorbs the fumes through a chamber filled with plastic shapes, which are doused with a scrubbing medium. The chemicals are washed into a sump, which is often filled with a neutralizing liquid. The fumes are then dispersed, or disposed of, in the conventional manner.
These fume hoods have an internal wash system that cleans the interior of the unit, to prevent a build-up of dangerous chemicals.
How a Fume Hood Works
A fume hood is a ventilated enclosure in which gases, vapors and fumes are captured and removed from the work area. An exhaust fan situated on the top of the laboratory building pulls air and airborne contaminants through connected ductwork and exhausts them to the atmosphere.
Depending on its design, the sash may move vertically, horizontally or a combination of the two and provides some protection to the hood user by acting as a barrier between the worker and the experiment.
The slots and baffles within the hood direct the air and, in many hoods, can be adjusted to allow the most even flow. It is important to prevent the baffles from becoming blocked, by excessive material storage or equipment, since this significantly affects the exhaust path within the hood and as a result, the efficiency of hood capture.
The beveled frame around the hood face, called the airfoil, allows for even air flow into the hood by eliminating sharp curves to reduce turbulence.