Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Slit Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
A ductless fume hood is a stand alone, compact workstation that provides a continuous flow of air that filters hazardous fume vapors out, recirculating clean air back into your working environment. Because the air is recirculated, no exterior ducting or makeup air is necessary. These air filtration systems are designed to keep harmful airborne contaminants away from the operator's respiratory zone while they work within the hood.
Also referred to as exhaust hoods, these containment systems are used for a variety of applications including chemical fume control, powder and dust removal, solvent vapor control, pharmaceutical powder filling, light grinding, acid gas fumes, anesthesia gas containment, epoxy fume control and other applications that produce hazardous particulates and fumes.
Ductless fume hoods offer several key advantages when weighing your options versus a ducted fume hood:
-No costly ducting or venting
-No permitting issues for venting outside of the building
-Adaptable (mobility and ease in change of layout)
-Environmentally friendly
-Significant energy cost saving
Model Parameters |
YT-1500A | YT-1500B | YT-1500C | YT-1800A | YT-1800B | YT-1800C |
Size (mm) | 1500(W)*865(D)*2400(H) | 1800(W)*1205(D)*2400(H) | ||||
Worktop Size (mm) | 1260(W1)*795(D1)*1100(H1) | 1560(W1)*795(D1)*1100(H1) | ||||
Worktop | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board | 20+6mm Ceramic | 20+6mm Ceramic | 12.7mm Solid Physiochemical Board |
Liner | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate | 5mm Ceramic Fibre | 5mm Compact Laminate | 5mm Compact Laminate |
Diversion Structure | Back Absorption | |||||
Control System | Touch-Tone Control Panel (LED Screen) | |||||
Input Power | 220V/32A | |||||
Fan Power | Less than 2.8 A | |||||
Socket Max. Load | 5KW | |||||
Faucet | 1 Set | |||||
Drainage Mode | Natural Fall | |||||
Storage | Double-Lock, Corrosion-Resistant, Damp-proof, Multi-layer Solid Wood with Mobile Wheel | |||||
Application | Indoor No-blast, 0-40 ºC | |||||
Application Field | Organic Chemical Experiment | |||||
Face Velocity Control | Manual Control | |||||
Average Face Velocity | 0.3-0.5 m/s Exhaust: 720-1200m³/h | 0.3-0.5 m/s Exhaust:900- 1490m³/h | ||||
Face Velocity Deviation | Less than 10% | |||||
Average Illumination | Less than 500 Lux | |||||
Noise | Within 55 dB | |||||
Exhaust Air | No Residue | |||||
Safety Test | In Accord with International Standard | |||||
Resistance | Less than 70Pa | |||||
Add Air Function | Distinctive Structure (Need Exclusive Add Air System) | |||||
Air Flow Control Valve | Dia. 250mm Flange Type Anti-Corrosion Control Valve | Dia. 315mm Flange Type Anti-Corrosion Control Valve |
In the event that satisfactory responses cannot be provided to ensure the safe usage of a recirculating fume hood, a decision should certainly be made in favour of selecting a ducted fume hood. Without a doubt, safety must remain the first priority when making this decision. Whether the lab is in a school or a blue-chip organisation, this is vital. However, while ducted enclosures have been the industry standard for containment of toxic gases for years, their tremendous infrastructure, usage, and environmental costs cannot be ignored any longer.
At the same time, some ductless fume hood manufacturers have recently emerged with safety services and product evolutions, which, under the right circumstances, can provide a viable solution in the laboratory. In today's world, the decision between the two styles needs to be made with a careful eye on safety, the environment, and energy consumption, and a conclusion can be made that it is worthwhile to try and determine where both products have their place. Given the extreme rise in energy costs and the benefits of using green technologies, taking the time to figure out which system is best where, and determining the applications most suitable to each can have a significant impact on one's budget and on the environment.
What Is a Fume Hood?
A fume hood is a piece of laboratory equipment designed to minimize a person's exposure to hazardous chemicals. The fume hood draws away harmful vapors so lab employees can work with chemicals without the risk of accidental exposure. The air is extracted from the fume hood and filtered to remove dangerous vapors, and then either exhausted outside of the building or recirculated back into the lab.
How Does a Fume Hood Work?
The fume hood works by using a sash (a window that opens or closes to protect the user) to contain the vapor and keep it away from the user's face or to prevent it from drifting out into the rest of the laboratory. Blowers draw in air from the room, through a filter or number of filters within the fume hood and towards an exhaust area.
To safely work in a fume hood, keep all work at least six inches away from the plane of the sash. This will ensure fumes are pulled away from the user. Also, make sure the hood sash remains closed as much as possible and keep the hood slots and baffles free of any obstructions by containers or equipment. Never place your head inside the fume hood when working with chemicals.
The airflow will differ depending on the type of hood you use. For a constant air volume (CAV) hood, the fan has only one speed, providing a stable and continuous airflow. A variable air volume (VAV) hood allows users to adjust the velocity of the exhaust for added versatility, while reduced air volume (RAV) hoods offer lower airflow performance, making them ideal for working with less harmful compounds.