Customization: | Available |
---|---|
Material: | Stainless Steel |
Type: | Bypass Type |
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
A fume hood (sometimes called a fume cupboard or fume closet) is a type of local ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts.
Standard Fume Hood
A standard fume hood is a constant air volume (CAV) hood, an older, traditionally less elaborate hood design used for general protection of the worker. Because the amount of exhausted air is constant, the face velocity of a CAV hood is inversely proportional to the sash height. That is, the lower the sash, the higher the face velocity. CAV hoods can be installed with or without a bypass provision which is an additional opening for air supply into the hood.
Bypass Fume Hood
The bypass fume hood is an improved variation on the conventional fume hood. The bypass is located above the sash face opening and protected by a grille which helps to direct air flow. The bypass is intended to address the varying face velocities that create air turbulence leading to air spillage. The bypass limits the increase in face velocity as the sash nears the fully closed position, maintaining a relatively constant volume of exhaust air regardless of sash position.
Auxiliary Air Hood
This fume hood, sometimes referred to as a makeup air fume hood, was developed as a variation on the bypass fume hood and reduces the amount of conditioned room air that is consumed. The auxiliary fume hood is a bypass hood with the addition of directly ducted auxiliary air to provide unconditioned or partially conditioned outside makeup air. Auxiliary air hoods were designed to save heating and cooling energy costs, but increase the mechanical and operational costs due to the additional ductwork, fans, and air tempering facilities. Unless the volume (and therefore velocity) of auxiliary air is carefully adjusted, the air curtain created will affect the hood operation and may pull vapors out of the hood interior. Installation of this type of hood is not permitted at OSU since the disadvantages outweigh the benefits.
Model Specification | WJ-1500A | WJ-1500B | WJ-1800A | WJ-1800B |
External dimensions of equipment(mm) | 1500(W)*1205 (D) *2400 (H) | 1800(W)*1205 (D) *2400 (H) | ||
Dimension of works pace (mm) | 1260(W1)*780(D1) *1100 (H1) | 1560(W1)*780(D1) *1100 (H1) | ||
Panel material | 20+6mm thick butterfly ceramics | |||
Material of internal lining board | 5mm thick ceramic fiber board | |||
Diversion structure | Lower air return | |||
Control system | Button control panel (LCD panel) | |||
PH value control | The medium is alkaline water solution; manual monitoring, and manual control through acid pump and alkali pump. | |||
Input power | Three-phase five-wire 380V/50A | |||
Current for air fan | Not over 2.8A(380V or 220V can be directly connected) | |||
Maximum load of socket | 12 KW(total of 4 sockets) | |||
Water tap | 1 set (remote control valve + water nozzle) | No | 1 set (remote control valve + water nozzle) | No |
Water discharge way | Magnetic chemical pump strong discharge | |||
Using environment | For non-explosion indoor use, within 0-40 degrees Celsius. | |||
Applicable fields | Inorganic chemistry experiment; Food, medicine, electronics, environment, metallurgy, mining, etc. | |||
Ways of Purification | Spray sodium hydroxide solution, no less than 8 cubic meters/hour | Spray sodium hydroxide solution.no less than 12 cubic meters/ hour | ||
Ways of surface air speed control | Manual control (through the electric air valve to adjust the exhaust air volume or adjust the height of the moving door) | |||
Average surface air speed | 0.6-0.8 m/s Exhaust air volume: 1420-1890m3/h (when door height h =500mm) | 0.6-0.8 m/s Exhaust air volume: 1760-2340m3/h (when door height h =500mm) | ||
Speed deviation of surface air | Not higher than 10% | |||
The average intensity of illumination | Not less than 700 Lux; Standard white and uv-free yellow LED lamps; The illumination is adjustable. | |||
Noise | Within 55 decibels | |||
Flow display | White smoke can pass through the exhaust outlet, no overflow. | |||
Safety inspection | No spikes, edges; Charged body and the exposed metal resistance is greater than 2 mQ; Under 1500V voltage, no breakdown or flashover occurred for 1min test. | |||
Resistance of exhaust cabinet | Less than 160 pa | |||
Power consumption | Less than 1.0kw/h (excluding power consumption of fans and external instruments) | Less than 1.2kw/h (excluding power consumption of fans and external instruments) | ||
Water consumption | Less than 3.2L/ h | Less than 4.0L/ h | ||
Performance of wind compensation | With a unique wind compensation structure, the volume of the wind will not cause turbulence in exhaust cabinet and will not directly blow to the staff (need to connect to the air compensation system of the laboratory) | |||
Air volume regulating valve | 315mm diameter flanged type anti-corrosion electric air flow regulating valve (electric contact actuator) |
•Fume hoods should be located within the laboratory to avoid cross currents at the fume hood face due to heating cooling, or ventilation supply or exhaust diffusers.Cross currents outside a hood can nullify or divert air flow onto a hood, negatively affecting its capture ability.
•Sufficient makeup air must be available within the laboratory to permit fume hoods to operate at their specified face velocities. A fume hood exhausts a substantial amount of air. Therefore, additional makeup air must be brought onto the room to maintain a proper air balance.
• Windows in labs that have fume hoods must be fixed closed. Breezes coming in through open lab windows can adversely affect the proper functioning of the hood. Turbulence caused by these wind currents can easily bring the contaminated air inside the hood back into the laboratory.
•Safety devices such as deluge showers, eye wash stations, fire extinguishers, and fire blankets should be located convenient to the fume hood operating personnel.
•Fume hoods shall not have an on/off control accessible in the laboratory, unless the lab has an alternate exhaust ventilation system or the exhaust is being filtered through a charcoal or HEPA filter. Fume hoods are an integral part of the entire laboratory's air balancing system which must be maintained. Labs must be maintained under positive pressure and when a fume hood is turned off the lab can develop positive pressure.
Close The Sash
When an employee is not working inside the hood, the sash should remain closed.
Avoid Storing Chemicals In The Hood
Employees should never store any chemicals inside the hood when it is not in use. Chemicals should instead be stored in industrial furniture cabinets equipped to hold hazardous chemicals. However, large equipment can be stored in the hood as long as it is on top of blocks to allow air flow under the equipment.
Report Any Problems
Promptly report any issues you have experienced with the fume hood to a supervisor. It is important that a supervisor takes this fume hood out of service until it can be repaired to ensure the safety of employees.
What should do if accident accurs?
No one likes to think that an accident may occur. However, if it does, it is always better to be prepared and know what the proper response looks like.
The most important step to take in the immediate aftermath of a fume hood accident is its response. Take any and all actions to safeguard people working in the lab first and foremost. That may include putting out any fires, containing spills, evacuating the area, attending to the injured and contacting emergency services.
After the accident, an investigation must immediately begin. This will prevent important data from being lost and witness forgetting important details. By determining whether safety procedures were followed and whether equipment worked as it should have, new protocols can be put into place to prevent similar future accidents.